786 research outputs found

    Systematic DC/AC Performance Benchmarking of Sub-7-nm Node FinFETs and Nanosheet FETs

    Get PDF
    In this paper, we systematically evaluate dc/ac performances of sub-7-nm node fin field-effect transistors (FinFETs) and nanosheet FETs (NSEETs) using fully calibrated 3-D TCAD. The stress effects of all the devices were carefully considered in terms of carrier mobility and velocity averaged within the active regions. For detailed AC analysis, the parasitic capacitances were extracted and decomposed into several components using TCAD RF simulation platform. FinFETs improved the gate electrostatics by decreasing fin widths to 5 nm, but the fin heights were unable to improve RC delay due to the trade-off between on-state currents and gate capacitances. The NSEETs have better on-state currents than do the FinFETs because of larger effective widths (W-eff) under the same device area. Particularly p-type NSEETs have larger compressive stress within the active regions affected by metal gate encircling all around the channels, thus improving carrier mobility and velocity much. On the other hand, the NSEETs have larger gate capacitances because larger W-eff increase the gate-to-source/drain overlap and outer-fringing capacitances. In spite of that, sub-7-nm node NSEETs attain better RC delay than sub-7-nm node as well as 10-nm node FinFETs for standard and high performance applications, showing better chance for scaling down to sub-7-nm node and beyond.11Ysciescopu

    Bottom oxide Bulk FinFETs Without Punch-Through-Stopper for Extending Toward 5-nm Node

    Get PDF
    Structural advancements of 5-nm node bulk fin-shaped field-effect transistors (FinFETs) without punch-through-stopper (PTS) were introduced using fully calibrated TCAD for the first time. It is challenging to scale down conventional bulk FinFETs into 5-nm technology node due to the sub-fin leakage increase. Meanwhile, bottom oxide deposition after anisotropic etching for source/drain (S/D) epi formation prevents the sub-fin leakage effectively even without the PTS doping, thus achieving better gate-to-channel controllability. Bottom oxide FinFETs also have smaller gate capacitances than do conventional FinFETs because the parasitic capacitances decrease by smaller S/D epi separated from the bottom Si layer, which reduces junction and outer-fringing capacitances. But smaller S/D epi decreases the stresses along the channel direction, and the effective widths decrease by the bottom oxide layer blocking the current paths at the bottom side of fin channels. Furthermore, increase of the interconnect resistance and capacitance parasitics down to 5-nm node diminishes the improvements of total delays as the interconnect wire length increases greatly. In spite of these drawbacks, 5-nm node bottom oxide FinFETs achieve smaller total delays than do the 7-nm node conventional FinFETs, especially for low-power applications, thus promising for the scalability of bulk FinFETs along with simple and reliable process by avoiding PTS step.11Ysciescopu

    Electroweak box diagrams on the lattice for pion and neutron decay

    Full text link
    CKM matrix is unitary by construction in the standard model(SM). The recent analyses on the first row of CKM matrix show 3σ \approx 3\sigma tension with unitarity. Nonperturbative calculations of the radiative corrections can reduce the theory uncertainty in CKM matrix elements. Here we compute the electroweak box contribution to the pion and kaon β\beta decays using seven Nf=2+1+1N_f=2+1+1 HISQ-Clover lattice with various pion mass and lattice spacing. The continuum and chiral limit is taken using the leading dependence on MπM_\pi and aa, where MπM_\pi extrapolation is taken to the physical pion mass and SU(3)SU(3) symmetric mass for pion and kaon box contribution, respectively. Our results are γWVAπ=2.820(28)×103 \square_{\gamma W}^{VA} |_{\pi} = 2.820 (28) \times 10^{-3} and γWVAK=2.384(17)×103 \square_{\gamma W}^{VA} |_{K} = 2.384 (17) \times 10^{-3} .Comment: 9 pages, 7 figures, Lattice 202

    Whole-brain imaging with receive-only multichannel top-hat dipole antenna RF coil at 7 T MRI

    Get PDF
    This work investigates the construction and performance of an eight-channel top-hat dipole receiver RF coil with a capacitive plate to increase the longitudinal whole-brain coverage and receiver sensitivity gain in the brain at 7 T MRI. The construction method for top-hat dipole-based receiver RF coil by adjusting the length and structure corresponding to each channel consists of tuning, matching, balun, and detuning circuitry. Electromagnetic simulations were analyzed on a 3-D human model to evaluate B1+ efficiency and specific absorption rate deposition. Coil performance was evaluated in the human head imaging in vivo. EM simulation results indicated a higher B1− sensitivity in the brain and z-directional coverage of the proposed eight-channel receiver RF coil. The MR images were acquired with an identical field of view showing the receiver coverage improvement in the brain when capacitive plates are used. The MR images also show the clear visibility of the complete set of the cervical vertebrae as well as the spinal cord. The acquired MRI results demonstrate the capability of the proposed RF coil to increase the receiver coverage in the longitudinal direction. Moreover, the B1+ efficiency, as well as receiver sensitivity in the brain, can be substantially improved with the use of multilayered capacitive plates of proper shape and size in conjunction with an RF coil

    Source/Drain Patterning FinFETs as Solution for Physical Area Scaling Toward 5-nm Node

    Get PDF
    A novel and feasible process scheme to downsize the source/drain (S/D) epitaxy of 5-nm node bulk fin-shaped field-effect transistors (FinFETs) were introduced by using fully-calibrated TCAD for the first time. The S/D epitaxy formed by selective epitaxial growth was diamond-shaped and occupied a large proportion of the device size irrespective of the active channel area. However, this problem was solved by patterning the low-k regions prior to S/D formation by preventing the lateral overgrowth of S/D epitaxy; the so-called S/D patterning (SDP). Its smaller S/D epitaxy decreased the average longitudinal channel stresses and drive currents for NFETs. However, the small diffusions of the boron dopants into the channel regions improved the short-channel effects and alleviated the drive current reduction for PFETs. Gate capacitances decreased greatly by reducing outer-fringing capacitances between the metal-gate stack and S/D regions. Through SPICE simulation based on the virtual source model, operation frequencies and dynamic powers of 15-stage ring oscillators were studied. SDP FinFETs have better circuit performances than the conventional and bottom oxide bulk FinFETs along with smaller active areas, promising for further area scaling through simple and reliable S/D process.11Ysciescopu

    Safety and tissue yield for percutaneous native kidney biopsy according to practitioner and ultrasound technique

    Get PDF
    BACKGROUND: Although percutaneous renal biopsy remains an essential tool in the diagnosis and treatment of renal diseases, in recent times the traditional procedure of nephrologists has been performed by non-nephrologists rather than nephrologists at many institutions. The present study assessed the safety and adequacy of tissue yield during percutaneous renal biopsy according to practitioners and techniques based on ultrasound. METHODS: This study included 658 native renal biopsies performed from 2005 to 2010 at a single centre. The biopsies were performed by nephrologists or expert ultrasound radiologists using the ultrasound-marked blind or real-time ultrasound-guided techniques. RESULTS: A total of 271 ultrasound-marked blind biopsies were performed by nephrologists, 170 real-time ultrasound-guided biopsies were performed by nephrologists, and 217 real-time ultrasound-guided biopsies were performed by radiologists during the study period. No differences in post-biopsy complications such as haematoma, need for transfusion and intervention, gross haematuria, pain, or infection were observed among groups. Glomerular numbers of renal specimens from biopsies performed by nephrologists without reference to any technique were higher than those obtained from real-time ultrasound-guided biopsies performed by expert ultrasound radiologists. CONCLUSIONS: Percutaneous renal biopsy performed by nephrologists was not inferior to that performed by expert ultrasound radiologists as related to specimen yield and post-biopsy complications

    Gate-All-Around FETs: Nanowire and Nanosheet Structure

    Get PDF
    DC/AC performances of 3-nm-node gate-all-around (GAA) FETs having different widths and the number of channels (Nch) from 1 to 5 were investigated thoroughly using fully-calibrated TCAD. There are two types of GAAFETs: nanowire (NW) FETs having the same width (WNW) and thickness of the channels, and nanosheet (NS) FETs having wide width (WNS) but the fixed thickness of the channels as 5 nm. Compared to FinFETs, GAAFETs can maintain good short channel characteristics as the WNW is smaller than 9 nm but irrespective of the WNS. DC performances of the GAAFETs improve as the Nch increases but at decreasing rate because of the parasitic resistances at the source/drain epi. On the other hand, gate capacitances of the GAAFETs increase constantly as the Nch increases. Therefore, the GAAFETs have minimum RC delay at the Nch near 3. For low power applications, NWFETs outperform FinFETs and NSFETs due to their excellent short channel characteristics by 2-D structural confinement. For standard and high performance applications, NSFETs outperform FinFETs and NWFETs by showing superior DC performances arising from larger effective widths per footprint. Overall, GAAFETs are great candidates to substitute FinFETs in the 3-nm technology node for all the applications

    Impacts of Heavy Rain and Typhoon on Allergic Disease

    Get PDF
    AbstractObjectivesAllergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea.MethodsThis study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis).ResultsDuring a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150–1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862–0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018–1.132) and atopy outpatients increased (RR = 1.134; range, 1.113–1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902–1.035) on the fifth lag day.ConclusionThis study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma

    Treatment of Verruca Vulgaris in Both External Auditory Canals Using Bleomycin Injections

    Get PDF
    Verruca vulgaris is caused by human papillomavirus (HPV) infections. Verruca in the external auditory canal (EAC) has rarely been reported. A previous case report introduced surgical excision as a treatment for verruca in the EAC. We present a case of verruca vulgaris in both EACs that was successfully treated with an intralesional bleomycin injection. A 32-year-old male patient presented with ear fullness and palpable lumps in both EACs. Both of his canals were filled with multiple pinkish, papillomatous masses. Verruca vulgaris was confirmed by skin biopsy. An otolaryngologist referred this patient and recommended surgical excision. However, we performed intralesional bleomycin injections for treatment. Twice intralesional bleomycin injections at one-month intervals had excellent results without recurrence, ulceration or scar formation. This result indicates that bleomycin injections may prove to be an effective first-line treatment of verruca in the EAC
    corecore